Scalable surrogate deconvolution for identification of partially-observable systems and brain modeling
نویسندگان
چکیده
منابع مشابه
Compositional Control Synthesis for Partially Observable Systems
We present a compositional method for deriving control constraints on a network of interconnected, partially observable and partially controllable plant components. The constraint derivation method works in conjunction with an antichain–based, symbolic algorithm for computing weakest strategies in safety games of imperfect information. We demonstrate how the technique allows a reactive controll...
متن کاملUnsupervised Modeling of Partially Observable Environments
We present an architecture based on self-organizing maps for learning a sensory layer in a learning system. The architecture, temporal network for transitions (TNT), enjoys the freedoms of unsupervised learning, works on-line, in non-episodic environments, is computationally light, and scales well. TNT generates a predictive model of its internal representation of the world, making planning met...
متن کاملFlexible and Scalable Partially Observable Planning with Linear Translations
The problem of on-line planning in partially observable settings involves two problems: keeping track of beliefs about the environment and selecting actions for achieving goals. While the two problems are computationally intractable in the worst case, significant progress has been achieved in recent years through the use of suitable reductions. In particular, the state-of-the-art CLG planner is...
متن کاملApproximate Predictive Representations of Partially Observable Systems
We provide a novel view of learning an approximate model of a partially observable environment from data and present a simple implementation of the idea. The learned model abstracts away unnecessary details of the agent’s experience and focuses only on making certain predictions of interest. We illustrate our approach in small computational examples, demonstrating the data efficiency of the alg...
متن کاملSymbolic Diagnosis of Partially Observable Concurrent Systems
Monitoring large distributed concurrent systems is a challenging task. In this paper we formulate (model-based) diagnosis by means of hidden state history reconstruction, from event (e.g. alarm) observations. We follow a so-called true concurrency approach: the model defines explicitly the causal and concurrency relations between the observable events, produced by the system under supervision o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neural Engineering
سال: 2020
ISSN: 1741-2552
DOI: 10.1088/1741-2552/aba07d